Isogeometric Analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows

نویسندگان

  • Babak S. Hosseini
  • Stefan Turek
  • Matthias Möller
  • Christian Palmes
چکیده

In this work, we present our numerical results of the application of Galerkin-based Isogeometric Analysis (IGA) to incompressible Navier–Stokes–Cahn–Hilliard (NSCH) equations in velocity–pressure– phase field–chemical potential formulation. For the approximation of the velocity and pressure fields, LBB compatible non-uniform rational B-spline spaces are used which can be regarded as smooth generalizations of Taylor–Hood pairs of finite element spaces. The one-step θ-scheme is used for the discretization in time. The static and rising bubble, in addition to the nonlinear Rayleigh-Taylor instability flow problems, are considered in two dimensions as model problems in order to investigate the numerical properties of the scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On imposing dynamic contact-angle boundary conditions for wall-bounded liquid–gas flows

We present an efficient scheme within the phase field framework for imposing dynamic contact angle boundary conditions for wall-bounded flows of two immiscible incompressible fluids with large density ratios. First, we develop an algorithm for imposing the dynamic contact angle boundary conditions to the Cahn–Hilliard equation. Our algorithm consists of two components: (i) we ignore the boundar...

متن کامل

A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios

We present an efficient time-stepping scheme for simulations of the coupled Navier– Stokes Cahn–Hilliard equations for the phase field approach. The scheme has several attractive characteristics: (i) it is suitable for large density ratios, and numerical experiments with density ratios up to 1000 have been presented; (ii) it involves only constant (time-independent) coefficient matrices for all...

متن کامل

Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach

We present in this note a unified approach on how to design simple, efficient and energy stable time discretization schemes for the Allen-Cahn or Cahn-Hilliard Navier-Stokes system which models twophase incompressible flows with matching or non-matching density. Special emphasis is placed on designing schemes which only require solving linear systems at each time step while satisfy discrete ene...

متن کامل

Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry

We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a di↵use-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak solution that is global in time is established in both 2D and 3D. Weak-strong uniqueness property of the weak solutions is provided as well.

متن کامل

Hamburger Beiträge zur Angewandten Mathematik A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System

We present a nonlinear model predictive framework for closedloop control of two-phase flows governed by the Cahn-Hilliard NavierStokes system. We adapt the concept for instantaneous control from [6, 12, 16] to construct distributed closed-loop control strategies for twophase flows. It is well known that distributed instantaneous control is able to stabilize the Burger’s equation [16] and also t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 348  شماره 

صفحات  -

تاریخ انتشار 2017